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Figure 1. Schematic representation of PAA-induced
tion of [Au(CN)2]�.
Poly(allylamine hydrochloride) (PAA) bearing positively charged side chains along the polymer chain was
demonstrated to serve as a polymeric spatially aligned scaffold for aggregation and self-association of
negatively charged [Au(CN)2]� through the electrostatic and aurophilic bonding interactions to afford
the luminescent [Au(CN)2]� aggregates.

� 2010 Elsevier Ltd. All rights reserved.
The utilization of polyelectrolytes has been recognized to be a
reliable strategy for the assembly of oppositely charged functional
groups along polyelectrolytes through electrostatic interaction.1

The anionic polyelectrolyte-induced metal–metal interaction and
concomitant luminescence have been reported with platinum(II)
complexes.1d,e,f We have also demonstrated that redox-active
ferrocenes, bearing a long alkylene chain, are aggregated along
the backbone of anionic double helical DNA, presenting the
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aggregation and self-associa-
redox-active (outer) and hydrophobic (inner) spheres around the
double helical core.2 On the other hand, an architectural design
of luminescent aggregated gold(I) complexes3,4 based on the self-
association properties through d10� � �d10 closed shell aurophilic
bonding interaction3b,d,5 has attracted growing attention. Efficient
control for aggregation is required for this kind of architecture. In
an aqueous media, emission of dicyanoaurate(I) ions, [Au(CN)2]�,
has been reported to be tunable based on the self-association
through aurophilicity as a function of concentration6 although
[Au(CN)2]� exists as a monomer at a low concentration probably
due to weak aurophilic bonding interaction (7–11 kcal/mol) com-
parable to hydrogen bonding. Poly(allylamine hydrochloride)
(PAA) decorates positively charged side chains along the polymer
chain, which is envisioned to serve as a polymeric spatially aligned
scaffold for the aggregation and self-association of negatively
charged [Au(CN)2]� through the electrostatic interaction. We
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Figure 2. UV/vis spectra of K[Au(CN)2] (1.0 � 10�3 M) in an ultra-pure water
solution containing various amounts of PAA (0, 0.2, 0.5, 1.0, 2.0, and 5.0 � 10�3 M
PAA unit, respectively) at 298 K.
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Figure 3. Emission (right, kex = 290 nm) and excitation (left) of K[Au(CN)2]
(1.0 � 10�3 M) in an ultra-pure water solution containing various amounts of PAA
(0, 0.2, 0.5, 1.0, 2.0, and 5.0 � 10�3 M PAA unit, respectively) at 298 K.
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Figure 4. Emission (right, kex = 290 nm) and excitation (left) spectra of various
amounts of K[Au(CN)2] (0.2, 0.5, 1.0, 2.0, and 5.0 � 10�3 M, respectively) in the
presence of PAA (1.0 � 10�3 M PAA unit) in an ultra-pure water solution at 298 K.
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herein report the luminescent properties of [Au(CN)2]� aggregates
based on electrostatic assembly along PAA (Fig. 1).

PAA-induced aggregation and self-association of [Au(CN)2]�

through the electrostatic interaction were investigated by
UV/vis spectroscopy. The addition of PAA (MW �15,000 as ob-
tained from Aldrich) to an ultra-pure water 1.0 � 10�3 M solution
(a) ((b)

Figure 5. Photographs of PAA-Au (a) under ambient light, (b) under UV irradiation with
298 K.
of K[Au(CN)2] exhibited the appearance of a new lower energy
absorption in the region of approximately 250–320 nm, and
increasing the ratio of the PAA unit to K[Au(CN)2] resulted in a
gradual increase of the peak in the UV/vis spectra (Fig. 2). These
observations indicate the aggregation and self-association of
[Au(CN)2]� induced by the electrostatic interaction with the posi-
tively charged side chains of PAA and aurophilic bonding
interaction.

The aggregation and self-association of [Au(CN)2]� around the
backbone of positively charged PAA exhibited the unique lumines-
cent properties as shown in Figure 3. The addition of 0.2 mol equiv
of PAA (based on the PAA unit) to an ultra-pure water 1.0 � 10�3 M
solution of K[Au(CN)2] resulted in the appearance of the emission
band at 484 nm. Such luminescence was not observed in the ab-
sence of PAA. Interestingly, further addition of PAA (0.5–5 mol e-
quiv of PAA unit) caused a decrease of the emission intensity
with a continuous blue shift of the emission band. High loading
of PAA per K[Au(CN)2] might lead to the arrangement of
[Au(CN)2]� separately to the backbone of positively charged PAA,
which prevents the aggregation, and thus causes the blue shift of
the emission band with a decrease of the emission intensity. When
PAA loading per K[Au(CN)2] is lowered, the ratio of [Au(CN)2]�

aggregates around the backbone of positively charged PAA is in-
creased, which induces a red shift of the emission band. The aggre-
gation and self-association of [Au(CN)2]� by increasing
concentration are known to induce the red shift of the emission
band of [Au(CN)2]�.6a,b Our results are consistent with the above-
mentioned report. A gradual blue shift of the excitation band was
observed by the continuous addition of PAA (Fig. 3), supporting
the PAA-induced self-association and luminescence of [Au(CN)2]�.
The order of the emission intensity is correlated with the intensity
of a new lower energy absorption shoulder at around 290 nm
(Fig. 2).

The reverse addition was performed as follows. The addition of
0.2–5 mol equiv of K[Au(CN)2] to an ultra-pure water
1.0 � 10�3 M solution of PAA (based on PAA unit) led to a gradual
increase of the emission intensity and a red shift of the emission
band with a red shift of the excitation band as shown in Figure 4,
indicating the aggregation of anionic [Au(CN)2]� around the back-
bone of positively charged PAA. From the above-mentioned re-
sults, the aggregation and self-association of [Au(CN)2]� are
envisioned to be tunable by changing the ratio of PAA and
K[Au(CN)2].

PAA-Au complex could be isolated in a high concentration. The
reaction of 5 mol equiv of an ultra-pure water 0.5 M solution of
K[Au(CN)2] and an ultra-pure water 0.1 M solution of PAA afforded
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PAA-Au complex as a white precipitate (Fig. 5a). PAA-Au complex
exhibited an intense blue emission with a maximum at 441 nm in
a solid state at 298 K as depicted in Figure 5c, which is blue shifted
as compared to that in a solution state. This observation is proba-
bly due to the formation of various aggregates, which is consistent
with the results of Patterson and co-workers.6a,b A distinct blue
luminescence was observed in the solid state upon exposure to
UV irradiation, k = 365 nm, (Fig. 5b). The quantum yield of PAA-
Au complex at room temperature, measured in an integrating
sphere for the packed powder sample, is 0.52 using kex = 340 nm.

In conclusion, poly(allylamine hydrochloride) (PAA) bearing
multiple positively charged side chains as a polymeric spatially
aligned scaffold was found to induce the aggregation and self-asso-
ciation of negatively charged [Au(CN)2]� through the electrostatic
and aurophilic bonding interactions, wherein tunable luminescent
properties of [Au(CN)2]� aggregates were demonstrated. Studies on
the application of polymer-induced metal ion aggregates, including
functional materials and catalysts are now in progress.
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